bttimes.co.kr Hartshornes Algebraic Geometry1판 [Hartshornespringer저] > bttimes4 | bttimes.co.kr report

Hartshornes Algebraic Geometry1판 [Hartshornespringer저] > bttimes4

본문 바로가기

bttimes4


[[ 이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다. ]


Hartshornes Algebraic Geometry1판 [Hartshornespringer저]

페이지 정보

작성일 20-11-07 20:12

본문




Download : 1.zip




have unwanted cancellation. Suppose (g) has zeroes of order nj at some (or
none, or all) Pj . Then for > maxfnj ; 1g, (f) has poles of higher order at


1-8460_01_.gif
n > maxf2g 􀀀 2; gg. Then similar to (Ex. 1.1), we nd an eective divisor

순서
there is a rational function f 2 K(X) having poles (of some order) at each
zeros of (g) cannot cancel the poles at the remaining Pj of (f), so this is
D = n(2P 􀀀 Q) of degree n, l(K 􀀀 D) = 0 (1.3.4), so Riemann-Roch gives


l(D) = n + 1 􀀀 g > 1. Thus there is an eective divisor D0 such that

D with D + n(r 􀀀 1)Q 􀀀 nP1 􀀀 nP2 􀀀 : : : 􀀀 nPr = (f). Again since (f) has
the diviso
Hartshornes Algebraic Geometry1판 [Hartshornespringer저] 입니다. 다운받기전에 여러 참고하시고 일치하시면 다운받아주세요.그리고 잘못된 자료일시 환불요청 하시면 환불을 받을수 있습니다.
레포트 > 공학,기술계열
nonconstant rational function f 2 K(X), which is regular everywhere except


regular everywhere except at P. Note we cannot control the zeros of f with

D0 􀀀 D = (f). Since (f) is degree 0 (II 6.10), D0 has degree n, so D0 cannot

of the Pi, and regular elsewhere.

설명

Hartshornes Algebraic Geometry1판 [Hartshornespringer저] 입니다.

Pj 6= Pi. Then the principal divisor (fg) must have a pole at Pi, and the
the pole, or D = nPi for some xed i. In the former case were done, in the
latter use (Ex. 1.1) to get a principal divisor (g) with a pole at Pi. (fg) may
1.2. Again let X be a curve, and let P1; P2; : : : ; Pr 2 X be points. Then
this proof.
솔루션

Download : 1.zip( 56 )


have a zero of order large enough to kill the pole of D of order 2n. f is
outside of D, either D cannot have a zero at any Pi large enough to cancel
Proof. We have to be careful. Multiplying functions from (Ex. 1.1) may
from the Pi, and consider the divisor n(P1 + P2 + : : : + Pr 􀀀 (r 􀀀 1)Q), with
at P.
다운받기전에 여러 참고하시고 일치하시면 다운받아주세요.그리고 잘못된 자료(data)일시 환불요청 하시면 환불을 받을수 있습니다.
Proof. Let X have genus g. Since X is dimension 1, there exists a point
degree 0 (II 6.10), degree of D is n. Since each Pi occurs with order 􀀀n
4.1 Section 1



1.1. Let X be a curve, and let P 2 X be a point. Then there exists a


Hartshornes Algebraic Geometry1판 [Hartshornespringer저]
Q 2 X;Q 6= P. Pick an n > maxfg; 2g 􀀀 2; 1g. Then for the divisor
result in zeroes cancelling poles. So proceed as follows: Fix a point Q distinct
다.
Total 18,664건 934 페이지

검색

REPORT 73(sv75)



해당자료의 저작권은 각 업로더에게 있습니다.

bttimes.co.kr 은 통신판매중개자이며 통신판매의 당사자가 아닙니다.
따라서 상품·거래정보 및 거래에 대하여 책임을 지지 않습니다.
[[ 이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다 ]]

[저작권이나 명예훼손 또는 권리를 침해했다면 이메일 admin@hong.kr 로 연락주시면 확인후 바로 처리해 드리겠습니다.]
If you have violated copyright, defamation, of rights, please contact us by email at [ admin@hong.kr ] and we will take care of it immediately after confirmation.
Copyright © bttimes.co.kr All rights reserved.